2019
DOI: 10.1016/j.jeurceramsoc.2019.02.032
|View full text |Cite
|
Sign up to set email alerts
|

Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
35
1
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 59 publications
(39 citation statements)
references
References 25 publications
0
35
1
3
Order By: Relevance
“…The feedstock is a multicomponent polymer system highly filled with powder of the desired ceramic material [ 9 , 11 , 12 , 13 ]. Once the so-called green parts are shaped by FFF, the polymer components are removed in the debinding stage by a catalytic reaction [ 14 ], dissolution in a solvent [ 12 , 15 , 16 ] and/or thermal decomposition [ 9 , 17 , 18 , 19 ]. Finally, the parts are sintered to obtain nearly dense components.…”
Section: Introductionmentioning
confidence: 99%
“…The feedstock is a multicomponent polymer system highly filled with powder of the desired ceramic material [ 9 , 11 , 12 , 13 ]. Once the so-called green parts are shaped by FFF, the polymer components are removed in the debinding stage by a catalytic reaction [ 14 ], dissolution in a solvent [ 12 , 15 , 16 ] and/or thermal decomposition [ 9 , 17 , 18 , 19 ]. Finally, the parts are sintered to obtain nearly dense components.…”
Section: Introductionmentioning
confidence: 99%
“…Quite recently FFF-printing of a comparable system (50 vol.% alumina), ethylene vinyl acetate (EVA) as binder, SA as surfactant) allowed for similar sinter densities around (sinter temperature 1600 °C) 98%–99% Th. [ 25 ]. The listed shrinkage values ( Table 5 ) must be explained in detail: The given deviation values do not represent the standard deviation, but the absolute deviation from the arithmetic mean value.…”
Section: Resultsmentioning
confidence: 99%
“…The fabrication of ceramic or metallic parts by FFF has the major advantage that experience derived from powder injection molding (PIM) helps to develop highly filled feedstocks (ceramic: >45 vol.%, metal: >60 vol.% solid load) with a similar binder composition [ 23 , 24 ]. Considering only ceramics, up to now mostly sintered alumina or mullite [ 23 , 24 , 25 , 26 ], zirconia [ 27 , 28 , 29 ], or silicon nitride [ 30 ] parts have been realized, typical binder components are paraffin wax, (modified) polyolefines, or thermoplastic elastomers. Fatty-acid derivatives, like stearic acid, or commercial additives with proprietary composition, are widely established as surfactants or plasticizers [ 23 , 24 , 25 , 27 , 28 , 30 , 31 ].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…3D 打印(增材制造)是以数字模型为基础, 将材 料逐层堆积制造出实体物品的新兴制造技术, 具有 个性化、快速化和节约化等特点, 是材料先进制备 与成型技术研究的前沿热点之一, 在结构陶瓷材料 领域具有广阔的应用前景。 结构陶瓷材料一般熔点较高, 以激光束作为能 量 源 的 直 接激 光 选 区 烧结 (SLS) 、 激 光 选 区 熔覆 (SLM)或激光工程化净尺寸成型(LENS)等技术存在 难以获得高密度的陶瓷材料、坯体内应力大和开裂 或晶粒尺寸不易控制等问题 [1][2][3] 。立体光固化(SLA) 和数字光处理(DLP)技术虽然打印精度高、 产品表面 质量高, 但陶瓷颗粒与光敏树脂的折射率差异带来 的散射会影响层间结合和打印精度, 打印浆料中粉 体易团聚或沉降也会影响打印浆料的稳定性 [4][5] 。直 写成型(DIW)方法虽然可以得到高密度陶瓷材料, 但也存在打印精度低和浆料稳定性差等问题 [6][7] 。 熔融沉积成型(FDM)使用的耗材混合料为固态, 不存在陶瓷颗粒悬浮稳定性差的问题。该方法适用 粉体广, 易于得到致密陶瓷材料, 适合制备大尺寸 部件。研究者尝试将该技术用于 ZrO 2 、Al 2 O 3 和 Si 3 N 4 等结构陶瓷材料的制备, 在耗材混合料和多 孔陶瓷的制备等方面取得了一定的进展 [8][9][10][11] 。传统 FDM 打印一般采用柔性的线材作为耗材, 而陶瓷粉 体和有机物混合料脆性较大, 无法制备出柔性线材, 或者因线材柔性不足而断裂导致打印过程中断。近 年来 Texas 大学 [12] 、Fraunhofer 研究所 [13] 和深圳大 学 [14] [15] 提出了非随机多孔陶瓷抗压强度和 气孔率之间的关系, 如式(2)所示。 图 6 3D 打印多孔氧化锆陶瓷 Fig. 6 3D printing porous zirconia ceramics…”
unclassified