SUMMARYCross-view action recognition is a challenging research field for human motion analysis. Appearance-based features are not credible if the viewpoint changes. In this paper, a new framework is proposed for cross-view action recognition by topic based knowledge transfer. First, Spatio-temporal descriptors are extracted from the action videos and each video is modeled by a bag of visual words (BoVW) based on the codebook constructed by the k-means cluster algorithm. Second, Latent Dirichlet Allocation (LDA) is employed to assign topics for the BoVW representation. The topic distribution of visual words (ToVW) is normalized and taken to be the feature vector. Third, in order to bridge different views, we transform ToVW into bilingual ToVW by constructing bilingual dictionaries, which guarantee that the same action has the same representation from different views. We demonstrate the effectiveness of the proposed algorithm on the IXMAS multi-view dataset. key words: cross-view human action recognition, topic distribution of visual words, latent dirichlet allocation, bilingual dictionary