The oleochemical and petrochemical industries provide diverse chemicals used in personal care products, food and pharmaceutical industries or as fuels, oils, polymers and others. However, fossil resources are dwindling and concerns about these conventional production methods have risen due to their strong negative impact on the environment and contribution to climate change. Therefore, alternative, sustainable and environmentally friendly production methods for oleochemical compounds such as fatty acids, fatty alcohols, hydroxy fatty acids and dicarboxylic acids are desired. The biotechnological production by engineered microorganism could fulfill these requirements. The concept of metabolic engineering, which is the modification of metabolic pathways of a host organism for increased production of a target compound, is a widely used strategy in biotechnology to generate cell factories or chassis strains for robust, efficient and high production. In this work, the versatile model and industrial yeast Saccharomyces cerevisiae was manipulated by metabolic engineering strategies for increased production of the medium-chain fatty acid octanoic acid and de novo production the derived 8-hydroxyoctanoic acid. Octanoic acid production was enabled by the fatty acid biosynthesis pathway by use of a mutated fatty acid synthase (FASRK) in a wild type FAS deficient strain. The yeast fatty acid synthase (FAS) consists of two polypeptides, α and β, which assemble to a α6β6 complex in a co-translational manner by interaction of the subunits. Because this step might be subject to cellular regulation, the α- and β- subunits of fatty acid synthase were fused to form a single-chain construct (fusFASRK), which displayed superior octanoic acid production compared with split FASRK. Thus, FASRK expression was identified as a limiting step of octanoic acid production. But the strains that produce octanoic acid have a severe growth defect that is undesirable for biotechnological applications and could lead to lower production titers. One reason is the strong inhibitory effect of octanoic acid. Another possibility is that the mutant FAS no longer produces enough essential long-chain fatty acids. To compensate for this, the mutated split and fused FAS variants were co-expressed individually in a strain harboring genomic wild type FAS alleles. In addition, mutant and wild type variants of fused and split FAS were co-expressed together in a FAS deficient strain. However, both cases resulted in decreased octanoic acid titers potentially by physical and/or metabolic crosstalk of the FAS variants. The fatty acid biosynthesis relies on cytosolic acetyl-CoA for initiation and derived malonyl-CoA for elongation and requires NADPH for reductive power. To increase production of octanoic acid, engineering strategies for increased acetyl-CoA and NADHP supply were investigated. First, the flux through the native cytosolic acetyl-CoA and NADPH providing pyruvate dehydrogenase bypass was enhanced by overexpression of the target genes ADH2, ALD6 and ACSL461P from Salmonella enterica in combination or individually. Next, the acety-CoA forming heterologous phosphoketolase/phosphotransacetylase pathway was expressed and NADPH formation was increased by redirecting the flux of glucose-6-phosphate into the NADPH producing oxidative branch of the pentose phosphate pathway. In particular, the flux through glycolysis and pyruvate dehydrogenase bypass was reduced by downregulating the expression of the phosphoglucose isomerase PGI1 and deleting the acetaldehyde dehydrogenase ALD6. Glucose-6-phosphate was guided into the pentose phosphate pathway by overexpressing the glucose-6-phosphate dehydrogenase ZWF1. The first approach did not influence octanoic acid production but the latter increased yields in the glucose consumption phase by 65 %. However, combining the superior fusFASRK with acetyl-CoA and NADPH supply engineering strategies did not result in additive production effects, indicating that other limitations hinder high octanoic acid accumulation. Limitations could be caused in particular by the strong inhibitory effects of octanoic acid or by intrinsic limitations of the FASRK mutant. To enlarge the octanoic acid production platform towards other derived valuable oleochemical compounds the de novo production of 8-hydroxyoctanoic acid was targeted. Since short- and medium-chain fatty acids have a strong inhibitory effect on Saccharomyces cerevisiae, the inhibitory effect of hydroxy fatty acid and dicarboxylic with eight or ten carbon atoms were compared and revealed only little or no growth impairment. Subsequently, the formation of 8-hydroxyoctanoic acid was targeted by a terminal hydroxylation of externally supplied octanoic acid in a bioconversion. For that, three heterologous genes, encoding for cytochromes P450 enzymes and their cognate cytochrome P450 reductases were expressed and 8-hydroxyoctanoic acid production was compared. In addition, the use of different carbon sources was compared. ...