The use of Fuzzy Logic Controller (FLC) as a speed controller for Induction Motor (IM) drives is garnering strong researchers' interest since it has proven to achieve superior performance compared to conventional controllers. The aim of this study is to review and investigate the design, operations, and effects of rules reduction for FLC in IM drives. Based on the literature, the most commonly used technique to design FLC Membership Functions (MFs) rule-base and control model is based on engineering skills and experienced behavioral aspects of the controlled system. Simplified fuzzy rules approaches have been introduced to reduce the number of fuzzy rules in order to realize hardware implementation. This study discusses different simplified rules methods applied to IM drives. Most of the proposed methods shared a common drawback in that they lacked systematic procedures for designing FLC rule base. Therefore, this research proposed a methodological approach to designing and simplifying the FLC rule-base for IM drives based on dynamic step response and phase plane trajectory of the second order representation of IM drives systems. The proposed method presents guidance for designing FLC rule-base based on the general dynamic step response of the controlled system. Following the proposed method procedures, a (9, 25, 49) rules size has been designed and simplified to a (5, 7, 9) rules size. The effectiveness and accuracy of the designed rules as well as the simplified rules were verified by conducting simulation analysis of IM drives using MATLAB/Simulink environment. Step speed command performance comparisons were achieved with both standard designed and simplified rules at various speed demands. The simulation results showed that the simplified rules maintain the drive performance and produced similar behavior as the standard designed rules.