This study employs a new method for regression model prediction in an uncertain environment and presents fuzzy parameter estimation of fuzzy regression models using triangular fuzzy numbers. These estimation methods are obtained by new learning algorithms in which linear programming is used. In this study, the new algorithm is a combination of a fuzzy rule-based system, on the basis of particle swarm optimization (PSO) and ant Colony Optimization ACđť‘‚ đť‘… . In addition, a simulation and a practical example in the field of machining process are applied to indicate the performance of the proposed methods in dealing with problems where the observed variables have the nature of uncertainty and randomness. Finally, the results of the proposed algorithms are evaluated.