Fuzzy regression analysis is one of the most widely used statistical techniques which represents the relation between variables. In this paper, the crisp inputs and the symmetrical triangular fuzzy output are considered. Two hybrid algorithms are considered to fit the fuzzy regression model. In this study, algorithms are based on adaptive neuro-fuzzy inference system. The results are derived based on the V-fold cross validation, so that the validity and quality of the suggested methods can be guaranteed. Finally, using the numerical examples, the performance of the suggested methods are compared with the other ones, such as linear programming (LP) and quadratic programming (QP). Based on examples, hybrid methods are verified for the prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.