Abstract-We address the issue of textured image segmentation in the context of the Gabor feature space of images. Gabor filters tuned to a set of orientations, scales and frequencies are applied to the images to create the Gabor feature space. A two-dimensional Riemannian manifold of local features is extracted via the Beltrami framework. The metric of this surface provides a good indicator of texture changes and is used, therefore, in a Beltrami-based diffusion mechanism and in a geodesic active contours algorithm for texture segmentation. The performance of the proposed algorithm is compared with that of the edgeless active contours algorithm applied for texture segmentation. Moreover, an integrated approach, extending the geodesic and edgeless active contours approaches to texture segmentation, is presented. We show that combining boundary and region information yields more robust and accurate texture segmentation results.