Finding optimal representations of signals in higher dimensions, in particular directional representations, is currently the subject of intensive research. Since the classical wavelet transform does not provide precise directional information in the sense of resolving the wavefront set, several new representation systems were proposed in the past, including ridgelets, curvelets and, more recently, Shearlets. In this paper we study and visualize the continuous Shearlet transform. Moreover, we aim at deriving mother Shearlet functions which ensure optimal accuracy of the parameters of the associated transform. For this, we first show that this transform is associated with a unitary group representation coming from the so-called Shearlet group and compute the associated admissibility condition. This enables us to employ the general uncertainty principle in order to derive mother Shearlet functions that minimize the uncertainty relations derived for the infinitesimal generators of the Shearlet group: scaling, shear and translations. We further discuss methods to ensure square-integrability of the derived minimizers by considering weighted L2-spaces. Moreover, we study whether the minimizers satisfy the admissibility condition, thereby proposing a method to balance between the minimizing and the admissibility property.
Abstract-We address the issue of textured image segmentation in the context of the Gabor feature space of images. Gabor filters tuned to a set of orientations, scales and frequencies are applied to the images to create the Gabor feature space. A two-dimensional Riemannian manifold of local features is extracted via the Beltrami framework. The metric of this surface provides a good indicator of texture changes and is used, therefore, in a Beltrami-based diffusion mechanism and in a geodesic active contours algorithm for texture segmentation. The performance of the proposed algorithm is compared with that of the edgeless active contours algorithm applied for texture segmentation. Moreover, an integrated approach, extending the geodesic and edgeless active contours approaches to texture segmentation, is presented. We show that combining boundary and region information yields more robust and accurate texture segmentation results.
Abstract. The uncertainty principle is a fundamental concept in the context of signal and image processing, just as much as it has been in the framework of physics and more recently in harmonic analysis. Uncertainty principles can be derived by using a group theoretic approach. This approach yields also a formalism for finding functions which are the minimizers of the uncertainty principles. A general theorem which associates an uncertainty principle with a pair of self-adjoint operators is used in finding the minimizers of the uncertainty related to various groups. This study is concerned with the uncertainty principle in the context of the Weyl-Heisenberg, the SIM(2), the Affine and the Affine-WeylHeisenberg groups. We explore the relationship between the two-dimensional affine group and the SIM(2) group in terms of the uncertainty minimizers. The uncertainty principle is also extended to the Affine-Weyl-Heisenberg group in one dimension. Possible minimizers related to these groups are also presented and the scale-space properties of some of the minimizers are explored.
The uncertainty principle is a fundamental concept in quantum mechanics, harmonic analysis and signal and information theory. It is rooted in the framework of quantum mechanics, where it is known as the Heisenberg uncertainty principle. In general, the uncertainty principle gives a lower bound on the product of variances for any state f with respect to two self-adjoint operators:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.