Recent advances in artificial neural networks enabled the quick development of new learning algorithms, which, among other things, pave the way to novel robotic applications. Traditionally, robots are programmed by human experts so as to accomplish pre-defined tasks. Such robots must operate in a controlled environment to guarantee repeatability, are designed to solve one unique task and require costly hours of development. In developmental robotics, researchers try to artificially imitate the way living beings acquire their behavior by learning. Learning algorithms are key to conceive versatile and robust robots that can adapt to their environment and solve multiple tasks efficiently. In particular, Reinforcement Learning (RL) studies the acquisition of skills through teaching via rewards. In this thesis, we will introduce RL and present recent advances in RL applied to robotics. We will review Intrinsically Motivated (IM) learning, a special form of RL, and we will apply in particular the Active Efficient Coding (AEC) principle to the learning of active vision. We also propose an overview of Hierarchical Reinforcement Learning (HRL), an other special form of RL, and apply its principle to a robotic manipulation task.