Vertical loading rate could be associated with residuum and whole body injuries affecting individuals fitted with transtibial prostheses. The objective of this study was to outline one out of five automated methods of extraction of vertical loading rate that stacked up the best against manual detection, which is considered the gold standard during pseudo-prosthetic gait. The load applied on the long axis of the leg of three males was recorded using a transducer fitted between a prosthetic foot and physiotherapy boot while walking on a treadmill for circa 30 min. The automated method of extraction of vertical loading rate, combining the lowest absolute average and range of 95% CI difference compared to the manual method, was deemed the most accurate and precise. The average slope of the loading rate detected manually over 150 strides was 5.56 ± 1.33 kN/s, while the other slopes ranged from 4.43 ± 0.98 kN/s to 6.52 ± 1.64 kN/s depending on the automated detection method. An original method proposed here, relying on progressive loading gradient-based automated extraction, produced the closest results (6%) to manual selection. This work contributes to continuous efforts made by providers of prosthetic and rehabilitation care to generate evidence informing reflective clinical decision-making.