In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non-Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in agreement many physicists, Galilei invariance is preserved. In addition, I discuss how the wave function behaves more similarly to a gauge potential than to a field. Finally I show how this favors a nomological rather than an ontological view of the wave function.