The kinematical groups are classified; they include, besides space-time translations and spatial rotations, ``inertial transformations'' connecting different inertial frames of reference. When parity and time-reversal are required to be automorphisms of the groups, and when a weak hypothesis on causality is made, the only possible groups are found to consist of the de Sitter groups and their rotation-invariant contractions. The scheme of the contractions connecting these groups enables one to discuss their physical meaning. Beside the de Sitter, Poincaré, and Galilei groups, two types of groups are found to present some interest. The ``static group'' applies to the static models, with infinitely massive particles. The other type, halfway between the de Sitter and the Galilei groups, contains two nonrelativistic cosmological groups describing a nonrelativistic curved space-time.
This paper is devoted to a detailed study of nonrelativistic particles and their properties, as described by Galilei invariant wave equations, in order to obtain a precise distinction between the specifically relativistic properties of elementary quantum mechanical systems and those which are also shared by nonrelativistic systems. After having emphasized that spin, for instance, is not such a specifically relativistic effect, we construct wave equations for nonrelativistic particles with any spin. Our derivation is based upon the theory of representations of the Galilei group, which define nonrelativistic particles. We particularly study the spin 1/2 case where we introduce a four-component wave equation, the nonrelativistic analogue of the Dirac equation. It leads to the conclusion that the spin magnetic moment, with its Lande factor g = 2, is not a relativistic property. More generally, nonrelativistic particles seem to possess intrinsic moments with the same values as their relativistic counterparts, but are found to possess no higher electromagnetic multipole moments. Studying "galilean electromagnetism" (i.e. the theory of spin 1 massless particles), we show that only the displacement current is responsible for the breakdown of galilean invariance in Maxwell equations, and we make some comments about such a "nonrelativistic electromagnetism". Comparing the connection between wave equations and the invariance group in both the relativistic and the nonrelativistic case, we are finally led to some vexing questions about the very concept of wave equations.
This paper is devoted to the study of the Galilei group and its representations. The Galilei group presents a certain number of essential differences with respect to the Poincaré group. As Bargmann showed, its physical representations, here explicitly constructed, are not true representations but only up-to-a-factor ones. Consequently, in nonrelativistic quantum mechanics, the mass has a very special role, and in fact, gives rise to a superselection rule which prevents the existence of unstable particles. The internal energy of a nonrelativistic system is known to be an arbitrary parameter; this is shown to come also from Galilean invariance, because of a nontrivial concept of equivalence between physical representations. On the contrary, the behavior of an elementary system with respect to rotations, is very similar to the relativistic case. We show here, in particular, how the number of polarization states reduces to two for the zero-mass case (though in fact there are no physical zero-mass systems in nonrelativistic mechanics). Finally, we study the two-particle system, where the orbital angular momenta quite naturally introduce themselves through the decomposition of the tensor product of two physical representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.