When the blood-spinal cord barrier (BSCB) is disrupted after a spinal cord injury (SCI), several pathophysiological cascades occur, including in ammation and apoptotic cell death of neurons and oligodendrocytes, resulting in permanent neurological de cits. Transient receptor potential melastatin 7 (TRPM7) is involved in the pathological processes in many neuronal diseases, including traumatic brain injury, amyotrophic lateral sclerosis, parkinsonism dementia, and Alzheimer's disease. Furthermore, carvacrol (CAR), a TRPM7 inhibitor, is known to protect against SCI by reducing oxidative stress and inhibiting the endothelial nitric oxide synthase pathway. However, the functions of TRPM7 in the regulation of BSCB homeostasis after SCI have not been examined. Here, we demonstrated that TRPM7, a calcium-mediated non-selective divalent cation channel, plays a critical role after SCI in rat. Rats were contused at T9 and given CAR (50 mg/kg) via intraperitoneally immediately and 12 hours after SCI, and then given the same dose once a day for 7 days. TRPM7 was found to be up-regulated after SCI in both in vitro and in vivo studies, and it was expressed in blood vessels alongside neurons and oligodendrocytes. Additionally, CAR treatment suppressed BSCB disruption by inhibiting the loss of TJ proteins and preserved TJ integrity. CAR also reduced apoptotic cell death and improved functional recovery after SCI by preventing BSCB disruption caused by blood in ltration and in ammatory responses. Based on these ndings, we propose that blocking the TRPM7 channel can inhibit the destruction of the BSCB and it is a potential target in therapeutic drug development for use in SCI.