Following Kahn, and Assim and Movahhedi, we look for bounds for the order of the capitulation kernels of higher K-groups of S-integers into abelian S-ramified p-extensions. The basic strategy is to change twists inside some Galois-cohomology groups, which is done via the comparison of Tate Kernels of higher order. We investigate two ways: a global one, valid for twists close to 0 (in a certain sense), and a local one, valid for twists close to 1 in cyclic extensions. The global method produces lower bounds for abelian p-extensions which are S-ramified, but not Z p -embeddable. The local method is close to that of [J. Assim, A. Movahhedi, Bounds for étale capitulation kernels, K-Theory 33 (2004) 199-213], but is improved to take into consideration what happens when S consists of only the p-places. In contrast to the first one, one can expect this second method to produce nontrivial lower bounds in certain Z p -extensions. For example, we construct Z p -extensions in which the capitulation kernel is as big as we want (when letting the twist vary). We also include a complete solution to the problem of comparing Tate Kernels.