Abstract. Fix a Galois extension E/F of totally real number fields such that the Galois group G has exponent 2. Let S be a finite set of primes of F containing the infinite primes and all those which ramify in E, let S E denote the primes of E lying above those in S, and let O S E denote the ring of S E -integers of E. We then compare the Fitting ideal of especially for biquadratic extensions, where we compute the index of the higher Stickelberger ideal. We find a sufficient condition for the Fitting ideal to contain the higher Stickelberger ideal in the case where E is a biquadratic extension of F containing the first layer of the cyclotomic Z 2 -extension of F , and describe a class of biquadratic extensions of F = Q that satisfy this condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.