“…The computations up to N = 3 or 4 (n ∈ [0, N]) are only for verification when a λ-stability exists; otherwise some examples do not λ-stabilize in the interval considered and no conclusion is possible. For the program, one must precise p, ell, the modulus mod, s = ±1 defining real or imaginary quadratic fields k, the length N of the tower and the interval for m: {p=2;ell=257;mod=5;s=-1;N=3;bm=2;Bm=10^3; for(m=bm,Bm,if(core(m)!=m || Mod(m,ell)==0,next); P=x^2-s*m;lambda=0;if(s==-1&kronecker(s*m,ell)==1,lambda=1);\\lambda print();print("p=",p," mod=",mod," ell=",ell," sm=",s*m," lambda=",lambda); for(n=0,N,Pn=polcompositum(polsubcyclo(ell,p^n),P) [1];kn=bnfinit(Pn,1);\\layer kn knmod=bnrinit(kn,mod);v=valuation(knmod.no,p);Cn=knmod.cyc;\\ray class group of kn C=List;d=matsize(Cn) [2];for(j=1,d,c=Cn[d-j+1];w=valuation(c,p); if(w>0,listinsert(C,p^w,1)));\\end of computation of the p-ray class group of kn print("v",n,"=",v," p-ray class group=",C)))} IMAGINARY QUADRATIC FIELDS, p=2, ell=257, mod=1: m=-2,lambda=1 m=-11,lambda=1 m=-14,lambda=0 m=-17,lambda=1 m=-15,lambda=1 v0=0 [] v0=0 [] v0=2 [4] v0=2 [4] v0=1 [2] v1=3 [8] v1=2 [4] v1=4 [4,4] v1=5 [8,2,2] v1=2 [4] v2=7 [16,4,2] v2=7 [8,8,2] v2=8 [4,4,4,4] [4] v0=6 [16,4] v0=4 [16] v0=5 [16,2] v0=6 [16,2,2] v0=5 [8,8] v1=2 [4] v1=6 [16,4] v1=4 [16] v1=5 [16,2] v1=8 [16,…”