Let p be a prime. We study pro-p groups of p-absolute Galois type, as defined by Lam-Liu-Sharifi-Wake-Wang. We prove that the pro-p completion of the right-angled Artin group associated to a chordal simplicial graph is of p-absolute Galois type, and moreover it satisfies a strong version of the Massey vanishing property. Also, we prove that Demushkin groups are of p-absolute Galois type, and that the free pro-p product -and, under certain conditions, the direct product -of two pro-p groups of p-absolute Galois type satisfying the Massey vanishing property, is again a pro-p group of p-absolute Galois type satisfying the Massey vanishing property. Consequently, there is a plethora of pro-p groups of p-absolute Galois type satisfying the Massey vanishing property that do not occur as absolute Galois groups.