In thin-film lubrication (TFL), generally, the viscosity of the lubricant and its coefficient of friction (CoF) increase. Finding a method to reduce the CoF in TFL is a significant challenge for tribologists. In the present work, we report a robust superlubricity attained by using polyalkylene glycols (PAGs, polar molecules) and poly-α-olefins (PAOs, nonpolar molecules) as lubricants on steel/steel friction pairs that have been pre-treated by wearing-in with polyethylene glycol aqueous solution (PEG(aq)). A steady superlubricity state with a CoF of 0.0045 for PAG100 and 0.006 for PAO6 could be maintained for at least 1 h. Various affecting factors, including the sliding velocity, normal load, and viscosity of the lubricants, were investigated. Element analysis proved that composite tribochemical layers were deposited on the worn region after the treatment with PEG(aq). These layers were formed by the tribochemical reactions between PEG and steel and composed of various substances including oxides, iron oxides, FeOOH, and Fe(OH) 3 , which contributed to the superlubricity. In addition to the tribochemical layers, ordered layers and a fluid layer were formed by the PAGs and PAOs during the superlubricity periods. All the three types of layers contributed to the superlubricity, indicating that it was attained in the TFL regime. Accordingly, a mechanism was proposed for the superlubricity of the PAGs and PAOs in the TFL regime in this work. This study will increase the scientific understanding of the superlubricity in the TFL regime and reveal, in the future, the potential for designing superlubricity systems on steel surfaces for industrial applications.