The thermoelectric properties of a PtSb(2) single crystal containing a stoichiometric gradient were investigated. The gradient was produced by employing a Stockbarger synthesis technique. The gradient was observed through the use of spatial resolved Seebeck coefficient measurements and verified utilizing X-Ray Diffraction and Energy Dispersive X-Ray Spectroscopy. The correlation between Pt/Sb ratio and physical property parameters--Seebeck coefficient, mobility, resistivity and charge carrier concentration--was studied. Elemental analysis by Energy Dispersive X-Ray Spectroscopy, X-Ray Fluorescence and Inductively Coupled Plasma revealed Sb deficiency in the crystal, which explains the observed high charge carrier concentration and metallic properties. The transport properties were measured in the temperature range T = 20-300 K on a polycrystalline sample. Furthermore, ab initio theoretical calculations have been conducted to support the interpretation of the measurements.