In this paper, the game theoretical analysis method is presented to provide optimal strategies for anomaly-based intrusion detection systems (A-IDS). A two-stage game model is established to represent the interactions between the attackers and defenders. In the first stage, the players decide to do actions or keep silence, and in the second stage, attack intensity and detection threshold are considered as two important strategic variables for the attackers and defenders, respectively. The existence, uniqueness, and explicit computation of the Nash equilibrium are analyzed and obtained by considering six different scenarios, from which the optimal detection and attack actions are provided. Numerical examples are provided to validate our theoretical results.