Polymeric materials are macromolecules, essentially a combination of numerous repeated subunits. Polymers are innovative and advanced materials that currently have a strong impact on our daily lives. In recent years, polymer use has been prominent due to the materials’ distinctive properties; thus, they entered different fields of science, technology and industrial-biomedical applications.The improvement of photoluminescence, optical and electrical characteristics of non-conducting Poly(methyl methacrylate) (PMMA) films was studied. Upon gamma irradiation of various doses, the photophysical and electrical properties of PMMA films were investigated using photoluminescence spectroscopy, ultraviolet–visible (UV-Vis) spectroscopy and the LCR Meter Bridge Circuit technique. The fluorescent response improved the photoluminescence (PL) spectral emission peaks according to gamma values. Strong fluorescence peaks appeared with the highest gamma dose. The UV–Vis results revealed a significant red-shift in the absorption edge as gamma doses increased. This shift exhibits a continuous decrease in the energy band gap values (from 3.50 to 2.60 eV for direct transition and from 3.05 to 1.55 eV for indirect transition). This was due to the formation of carbon clusters, which led to an increase in the electrical conductivity and improved the dielectric parameters of the irradiated PMMA films. Among a variety of measurements presented and discussed in the present study, the electrical measurements showed improved electrical characteristics of gamma-irradiated PMMA films.