Hydrogel electrolytes for energy storage devices have made great progress, yet they present a major challenge in the assembly of flexible supercapacitors with high ionic conductivity and self-healing properties. Herein, a smart self-healing hydrogel electrolyte based on alginate/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (alginate/PEDOT:PSS)(A/P:P) was prepared, wherein H2SO4 was employed as a polymeric initiator, as well as a source of ions. PEDOT:PSS is a semi-interpenetrating network (IPN) that has been used in recent studies to exhibit quick self-healing properties with the H₂SO₃ additive, which further improves its mechanical strength and self-healing performance. A moderate amount of PEDOT:PSS in the hydrogel (5 mL) was found to significantly improve the ionic conductivity compared to the pure hydrogel of alginate. Interestingly, the alginate/PEDOT:PSS composite hydrogel exhibited an excellent ability to self-heal and repair its original composition within 10 min of cutting. Furthermore, the graphite conductive substrate-based supercapacitor with the alginate/PEDOT:PSS hydrogel electrolyte provided a high specific capacitance of 356 F g−1 at 100 mV/s g−1. The results demonstrate that the A/P:P ratio with 5 mL PEDOT:PSS had a base sheet resistance of 0.9 Ω/square. This work provides a new strategy for designing flexible self-healing hydrogels for application in smart wearable electronics.
Modifications taking place in ultrahigh molecular weight polyethylene (UHMWPE) films due to gamma ray radiation-induced and investigated in correlation with the applied doses. Films were irradiated in a vacuum at room temperature by a 1.25 MeV Co60 a source with doses ranging from 0 to 300 kGg. The optical, chemical, structural, and surface morphological properties of the irradiated and unirradiated UHMWPE films were investigated by UV-Visible, FTIR, XRD, and SEM, respectively. The band gap
E
g
decreases with increasing radiation dose and coloration effects have been seen at higher doses. FTIR spectra show an oscillatory behavior in the transmittance intensities without affecting in their peak positions. Number of small absorption peaks can be seen clearly which may be due to the cross-linking of the polymeric chain. No significant change in crystalline peak has been found in the X-ray diffraction pattern indicating the structural stability of the polymer. The morphology of the smooth topography of the polymer samples to change rougher one polymeric sample shows the formation of microvoids on the surface of the polymeric materials with the increase of the doses from 0 to 300 kGy.
A new ion-exchange resin was obtained by incorporating a tripropylamine group into a tamarind polysaccharide resin (TTA). The TTA resin was characterized by FTIR, elemental analysis, and other physicochemical properties. The influence of pH, treatment time and resin concentration on the adsorption of metal ions from industrial wastewater was investigated. It was found that the obtained TTA resin effectively removes heavy metal ions in the following order: Fe2+> Cu2+> Zn2+> Cd2+> Pb2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.