GaN Epitaxial Layer Grown with Conductive Al<SUB><I>x</I></SUB>Ga<SUB>1−<I>x</I></SUB>N Buffer Layer on SiC Substrate Using Metal Organic Chemical Vapor Deposition
Abstract:This study investigated GaN epitaxial layer growth with a conductive Al(x)Ga(1-x)N buffer layer on n-type 4H-SiC by high-temperature metalorganic chemical vapor deposition (HT-MOCVD). The Al composition of the Al(x)Ga(1-x)N buffer was varied from 0% to 100%. In terms of the crystal quality of the GaN layer, 79% Al was the optimal composition of the Al(x)Ga(1-x)N buffer layer in our experiment. A vertical conductive structure was fabricated to measure the current voltage (I-V) characteristics as a function of A… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.