Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Метою роботи є дослiдження питань, пов'язаних iз системами керування дорожнiм рухом, та представлення системи управлiння, яка використовує iнтелектуальнi транспортнi системи та нейроннi мережi. Використання iнтелектуальних транспортних систем (ITС) -це засiб покращення транспортних систем, що робить його незалежним вiд розвитку вiдповiдної iнфраструктури. Атрибути нейронних мереж втiлено з метою вирiшення проблем оптимiзацiї, якi передбачають розробку оптимальних стратегiй управлiння трафiком. Представлена система управлiння дорожньо-транспортним рухом, яка використовує IТС та нейроннi мережi, може бути застосована для прогнозування рiзноманiтних ситуацiй у сферi управлiння дорожнiм рухом. Представленi результати дослiджень, метою яких була перевiрка ефективностi нейронних мереж в аспектi прогнозування обсягу перевезень на окремих нацiональних дорогах, реалiзованих на основi наукового пошуку та дискурсу логiстичних аспектiв управлiння дорожнiм рухом, з особливим акцентом на iнтелектуальнi транспортнi системи. Вищезгаданi питання є надзвичайно важливими через необхiднiсть виявлення очiкуваного навантаження на маршрути. Важливими елементами iнтенсивностi руху є коливання трафiку, пов'язанi з такими факторами, як час, рух, архiтектура дорiг i використання потужностей. Дослiдження послужило перевiрцi ефективностi чотирьох незалежних нейронних мереж, прогнозуючих обсяг трафiку, протягом тижня для визначених моментiв часу. Емпiричнi данi, використанi в представлених дослiдженнях, були отриманi з датчикiв руху, встановлених на вибраних нацiональних дорогах, в певнi промiжки часу. Це дозволило визначити перспективи розвитку нейронних мереж на основi дослiджуваної моделi, що представляє собою набiр елементiв штучного iнтелекту що керують обсягами транспортних засобiв та вловлюють повторюванi закономiрностi. Представлено результати використання авторської моделi впровадження алгоритму на основi нейронних мереж у транспортних мережах для виконання кiлькiсного та якiсного аналiзу її дiяльностi, а також накопичення вiдповiдних даних. Проаналiзовано рiзнi способи отримання даних для ефективного моделювання. Внаслiдок виявлення рiзноманiтних неточностей, системних недосконалостей або надмiрних витрат були запропонованi альтернативнi рiшення, що можуть усунути такого типу проблеми. Авторами також були запропонованi пiдходи, що дозволяють обмежити появу таких проблем. Наведенi результати дослiджень обґрунтовують доцiльнiсть використання нейронних мереж для регулювання транспортних потокiв. Представленi результати були отриманi у ходi фактичних спостережень й порiвнювалися з результатами iнших дiючих систем. Авторами проаналiзовано адекватнiсть представленої моделi та можливостi її вдосконаленняКлючовi слова: iнтелектуальнi транспортнi системи, нейроннi мережi, управлiння дорожнiм рухом UDC 004.942
Метою роботи є дослiдження питань, пов'язаних iз системами керування дорожнiм рухом, та представлення системи управлiння, яка використовує iнтелектуальнi транспортнi системи та нейроннi мережi. Використання iнтелектуальних транспортних систем (ITС) -це засiб покращення транспортних систем, що робить його незалежним вiд розвитку вiдповiдної iнфраструктури. Атрибути нейронних мереж втiлено з метою вирiшення проблем оптимiзацiї, якi передбачають розробку оптимальних стратегiй управлiння трафiком. Представлена система управлiння дорожньо-транспортним рухом, яка використовує IТС та нейроннi мережi, може бути застосована для прогнозування рiзноманiтних ситуацiй у сферi управлiння дорожнiм рухом. Представленi результати дослiджень, метою яких була перевiрка ефективностi нейронних мереж в аспектi прогнозування обсягу перевезень на окремих нацiональних дорогах, реалiзованих на основi наукового пошуку та дискурсу логiстичних аспектiв управлiння дорожнiм рухом, з особливим акцентом на iнтелектуальнi транспортнi системи. Вищезгаданi питання є надзвичайно важливими через необхiднiсть виявлення очiкуваного навантаження на маршрути. Важливими елементами iнтенсивностi руху є коливання трафiку, пов'язанi з такими факторами, як час, рух, архiтектура дорiг i використання потужностей. Дослiдження послужило перевiрцi ефективностi чотирьох незалежних нейронних мереж, прогнозуючих обсяг трафiку, протягом тижня для визначених моментiв часу. Емпiричнi данi, використанi в представлених дослiдженнях, були отриманi з датчикiв руху, встановлених на вибраних нацiональних дорогах, в певнi промiжки часу. Це дозволило визначити перспективи розвитку нейронних мереж на основi дослiджуваної моделi, що представляє собою набiр елементiв штучного iнтелекту що керують обсягами транспортних засобiв та вловлюють повторюванi закономiрностi. Представлено результати використання авторської моделi впровадження алгоритму на основi нейронних мереж у транспортних мережах для виконання кiлькiсного та якiсного аналiзу її дiяльностi, а також накопичення вiдповiдних даних. Проаналiзовано рiзнi способи отримання даних для ефективного моделювання. Внаслiдок виявлення рiзноманiтних неточностей, системних недосконалостей або надмiрних витрат були запропонованi альтернативнi рiшення, що можуть усунути такого типу проблеми. Авторами також були запропонованi пiдходи, що дозволяють обмежити появу таких проблем. Наведенi результати дослiджень обґрунтовують доцiльнiсть використання нейронних мереж для регулювання транспортних потокiв. Представленi результати були отриманi у ходi фактичних спостережень й порiвнювалися з результатами iнших дiючих систем. Авторами проаналiзовано адекватнiсть представленої моделi та можливостi її вдосконаленняКлючовi слова: iнтелектуальнi транспортнi системи, нейроннi мережi, управлiння дорожнiм рухом UDC 004.942
Objective: In order to introduce automated vehicles on public roads, it is necessary to ensure that these vehicles are safe to operate in traffic. One challenge is to prove that all physically possible variations of situations can be handled safely within the operational design domain of the vehicle. A promising approach to handling the set of possible situations is to identify a manageable number of logical scenarios, which provide an abstraction for object properties and behavior within the situations. These can then be transferred into concrete scenarios defining all parameters necessary to reproduce the situation in different test environments. Methods: This article proposes a framework for defining safety-relevant scenarios based on the potential collision between the subject vehicle and a challenging object, which forces the subject vehicle to depart from its planned course of action to avoid a collision. This allows defining only safety-relevant scenarios, which can directly be related to accident classification. The first criterion for defining a scenario is the area of the subject vehicle with which the object would collide. As a second criterion, 8 different positions around the subject vehicle are considered. To account for other relevant objects in the scenario, factors that influence the challenge for the subject vehicle can be added to the scenario. These are grouped as action constraints, dynamic occlusions, and causal chains. Results: By applying the proposed systematics, a catalog of base scenarios for a vehicle traveling on controlled-access highways has been generated, which can directly be linked to parameters in accident classification. The catalog serves as a basis for scenario classification within the PEGASUS project. Conclusions: Defining a limited number of safety-relevant scenarios helps to realize a systematic safety assurance process for automated vehicles. Scenarios are defined based on the point of the potential collision of a challenging object with the subject vehicle and its initial position. This approach allows defining scenarios for different environments and different driving states of the subject vehicle using the same mechanisms. A next step is the generation of logical scenarios for other driving states of the subject vehicle and for other traffic environments. ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.