“…A vast number of network inference/reconstruction methods have been widely developed to infer GRN using transcriptomic profiles. To the best of our knowledge, the existing network inference/reconstruction methods can be categorized into the following groups according to their principles ( Liu 2015 ): regression-based method [multiple regression model ( Zhang et al 2010 ), SINCERITIES ( Papili Gao et al 2018 ), and GNIPLR ( Zhang et al 2021 )], tree-based method [GENIE3 ( Huynh-Thu et al 2010 )], stability selection method [TIGRESS ( Haury et al 2012 )], correlation-based method [ARACNE ( Margolin et al 2006 ) and CLR ( Faith et al 2007 )], knowledge-based method [RegNetwork ( Liu et al 2015 )], ordinary differential equation method [linear ODE ( Wu et al 2014 ), SCODE ( Matsumoto et al 2017 ), and GRISLI ( Aubin-Frankowski and Vert 2020 )], Bayesian-based method [SSMs ( Beal et al 2005 ), Vireo ( Huang et al 2019 ), and NAE ( Wang et al 2022 )], Boolean network (BN) model method [ATEN ( Shi et al 2020 ) and GAPORE ( Liu et al 2021 )], and deep learning model [DeepDRIM ( Chen et al 2021 ), dynDeepDRIM ( Xu et al 2022 ), and DeepSEM ( Shu et al 2021 )].…”