We study in detail the transverse collective modes of simple holographic models in presence of electromagnetic Coulomb interactions. We render the Maxwell gauge field dynamical via mixed boundary conditions, corresponding to a double trace deformation in the boundary field theory. We consider three different situations: (i) a holographic plasma with conserved momentum, (ii) a holographic (dirty) plasma with finite momentum relaxation and (iii) a holographic viscoelastic plasma with propagating transverse phonons. We observe two interesting new features induced by the Coulomb interactions: a mode repulsion between the shear mode and the photon mode at finite momentum relaxation, and a propagation-todiffusion crossover of the transverse collective modes induced by the finite electromagnetic interactions. Finally, at large charge density, our results are in agreement with the transverse collective mode spectrum of a charged Fermi liquid for strong interaction between quasiparticles, but with an important difference: the gapped photon mode is damped even at zero momentum. This property, usually referred to as anomalous attenuation, is produced by the interaction with a quantum critical continuum of states and might be experimentally observable in strongly correlated materials close to quantum criticality, e.g. in strange metals.