2009
DOI: 10.1103/physrevb.80.054303
|View full text |Cite
|
Sign up to set email alerts
|

Gapped state of a carbon monolayer in periodic magnetic and electric fields

Abstract: When smooth, zero-on-average, periodic magnetic and electric fields are applied to a carbon mono-layer (graphene), a gap between the valence and conduction band is introduced. Here this gapped state is studied analytically. It is found that it does not correspond to a band insulator: a constant electric field induces a quantized Hall current even though the magnetic flux through the sample is zero and there are no Landau levels. The phenomenon is of the same type as that discovered by Haldane for a graphene sa… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
71
1

Year Published

2010
2010
2023
2023

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 62 publications
(75 citation statements)
references
References 27 publications
3
71
1
Order By: Relevance
“…Surprisingly enough, despite the strong anisotropy of the magnetic profile, the dispersion presents a Dirac cone with an isotropically renormalized velocity. [12][13][14] To see this, we notice that Tr Ω(E = 0, k y , d) = 2 cosh(2dk y ), which can be easily checked by the explicit calculation of the zero-energy states, and by further expanding the trace to lowest order in E and k y we obtain…”
Section: Neutrality Point and Group Velocitymentioning
confidence: 99%
“…Surprisingly enough, despite the strong anisotropy of the magnetic profile, the dispersion presents a Dirac cone with an isotropically renormalized velocity. [12][13][14] To see this, we notice that Tr Ω(E = 0, k y , d) = 2 cosh(2dk y ), which can be easily checked by the explicit calculation of the zero-energy states, and by further expanding the trace to lowest order in E and k y we obtain…”
Section: Neutrality Point and Group Velocitymentioning
confidence: 99%
“…Recently, a novel state of matter, a quantum Hall insulator without a macroscopic magnetic field (Haldane state 5 ), has spawned the interest in unusual topological properties of band structures, leading to the prediction of topological insulators in two and three dimensions [6][7][8][9][10] . It was understood afterwards that such Haldane state can be realized in a graphene superlattice by a suitable combination of scalar and vector electromagnetic potentials 11 . A gap opens in the electronic spectrum, turning graphene into a quantum Hall insulator with protected chiral edge states.…”
Section: Graphenementioning
confidence: 99%
“…A periodic magnetic field, when correlated with a scalar potential leads to a gap whose signs are opposite in the two valleys 11 . A combination of this gap and the gap due to strains leads to gaps of different values in the two valleys, allowing for the control of the valley and sublattice degrees of freedom.…”
Section: Interplay With Magnetic Fieldmentioning
confidence: 99%
“…Such superlattices (SLs) are commonly used to alter the band structure of nanomaterials. In singlelayer graphene already a number of papers relate their work to the theoretical understanding of such periodic structures [8][9][10][11][12][13][14] . Much less experimental and theoretical work has been done on bilayer graphene 14,15 .…”
Section: Introductionmentioning
confidence: 99%