Carbon dioxide emissions to the atmosphere from inland waters-streams, rivers, lakes and reservoirs-are nearly equivalent to ocean and land sinks globally. Inland waters can be an important source of methane and nitrous oxide emissions as well, but emissions are poorly quantified, especially in Africa. Here we report dissolved carbon dioxide, methane and nitrous oxide concentrations from 12 rivers in sub-Saharan Africa, including seasonally resolved sampling at 39 sites, acquired between 2006 and 2014. Fluxes were calculated from published gas transfer velocities, and upscaled to the area of all sub-Saharan African rivers using available spatial data sets. Carbon dioxide-equivalent emissions from river channels alone were about 0.4 Pg carbon per year, equivalent to two-thirds of the overall net carbon land sink previously reported for Africa. Including emissions from wetlands of the Congo river increases the total carbon dioxide-equivalent greenhouse-gas emissions to about 0.9 Pg carbon per year, equivalent to about one quarter of the global ocean and terrestrial combined carbon sink. Riverine carbon dioxide and methane emissions increase with wetland extent and upland biomass. We therefore suggest that future changes in wetland and upland cover could strongly a ect greenhouse-gas emissions from African inland waters.C limate predictions necessitate a full and robust account of natural and anthropogenic greenhouse-gas (GHG) fluxes, especially for CO 2 (refs 1-3), CH 4 (ref. 4) and N 2 O (ref. 5), which together accounted for 94% of the anthropogenic global radiative forcing by well-mixed GHGs in 2011 relative to 1750 (ref. 6). Inland waters (streams, rivers, lakes and reservoirs) are increasingly recognized as important sources of GHGs to the atmosphere, with global CO 2 and CH 4 emissions estimated at 2.1 PgC yr −1 (ref.3) and 0.7 PgC yr −1 (CO 2 -equivalents; CO 2 e) (ref. 4) (1 Pg = 10 15 g), respectively. Considering that the oceanic and land carbon (C) sinks correspond to ∼1.5 and ∼2.0 PgC yr −1 (ref. 7), respectively, the GHG flux from inland waters is significant in the global C budget.In a recent global compilation of inland CO 2 data 3 , <20 data points (out of 6,708, that is, <0.3%) represented African inland waters (with the exception of South Africa, which has been densely sampled), even though they account for ∼12% of both global freshwater discharge 8 and riverine surface area 3 , and include some of the largest rivers and lakes in the world. Equally for the global CH 4 database, there is a strong under-representation of tropical inland waters, whereby a recent synthesis 4 resorted to extrapolating CH 4 fluxes from temperate rivers.The prevailing large uncertainty involved in GHG flux estimates for inland waters, essentially due to the paucity of available data, is coupled to a poor understanding of underlying processes, both of which preclude gauging of future fluxes in response to human pressures. In particular, there is a need to further understand the link between inland water GHG fluxes and ...