Citation for published item:intongeD em¡ elie nd gtinellD frr nd oniD vind tF nd uu'mnnD quinevere nd qenzelD einhrd nd gorteseD vu nd hv¡ eD omeel nd pletherD homs tF nd qri¡ EgrpioD tvier nd urmerD grsten nd rekmnD imothy wF nd tnowiekiD teven nd vutzD uthrin nd osrioD hvid nd himinovihD hvid nd husterD url nd ngD ting nd uytsD tijn nd forthkurD nhyeet nd vmpertiD ssell nd oertsEforsniD quido F @PHIUA 9xgyvh qe X the omplete sew QH m legy survey of moleulr gs for glxy evolution studiesF9D estrophysil journl supplement seriesFD PQQ @PAF pF PPF Further information on publisher's website:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
AbstractWe introduce xCOLD GASS, a legacy survey providing a census of molecular gas in the local universe. Building on the original COLD GASS survey, we present here the full sample of 532 galaxies with CO (1-0) measurements from the IRAM 30 m telescope. The sample is mass-selected in the redshift interval z 0.01 0.05 < < from the Sloan Digital Sky Survey (SDSS) and therefore representative of the local galaxy population with M M 10 9 * > . The CO (1-0) flux measurements are complemented by observations of the CO (2-1) line with both the IRAM 30 m and APEX telescopes, H I observations from Arecibo, and photometry from SDSS, WISE, and GALEX. Combining the IRAM and APEX data, we find that the ratio of CO (2-1) to CO (1-0) luminosity for integrated measurements is r 0.79 0.03 21 = , with no systematic variations across the sample. The CO (1-0) luminosity function is constructed and best fit with a Schechter function with parameters L 7.77 2.11 10 K km s pc 9 M , we are able to extend our study of gas scaling relations and confirm that both molecular gas fractions ( f H 2 ) and depletion timescale (t H dep 2 ( )) vary with specific star formation rate (or offset from the star formation main sequence) much more strongly than they depend on stellar mass. Comparing the xCOLD GASS results with outputs from hydrodynamic and semianalytic models, we highlight the constraining power of cold gas scaling relations on models of galaxy formation.