“…In addition to the presence of the three largest groups, some small groups have been also introduced to tackle ORPD problem such as the gravitational search algorithm (GSA) [32][33][34], improved GSA with feasible conditional selection strategies (IGSA-FCSS) [35], quasi-oppositional teaching learning based optimization (QOTLBO) [36], teaching learning based optimization (TLBO) [36], modified Gaussian barebones based TLBO (MGBTLBO) [37], and Gaussian barebones based TLBO (GBTLBO) [37]. From 2015 to 2017, a high number of methods were employed for ORPD problem such as the hybrid Nelder-Mead simplex based firefly algorithm (HNMS-FA) [38], Artificial Bee Colony Algorithm (ABC) [39], differential search algorithm (DSA) [40], exchange market algorithm (EMA) [41], chaotic krill herd algorithm (CKHA) [42], gray wolf optimizer (GWO) [43], Gaussian barebones water cycle algorithm (GBBWCA) [44], ant lion optimizer (ALO) [45], moth-flame optimization technique (MFOT) [46], whale optimization algorithm (WOA) [47], Ant Colony Optimization Algorithm (ACOA) [48], and backtracking search algorithm (BTSA) [49]. All in all, most of these methods had a strong search ability and outperformed deterministic algorithms, original metaheuristic algorithms in terms of solution quality, computing time, and convergence speed.…”