Let P be a simple, stationary point process on R d having fast decay of correlations, i.e., its correlation functions factorize up to an additive error decaying faster than any power of the separation distance. Let Pn := P ∩ Wn be its restriction to windows Wn := [− 1 2 n 1/d , 1 2 n 1/d ] d ⊂ R d . We consider the statistic H ξ n := x∈Pn ξ(x, Pn) where ξ(x, Pn) denotes a score function representing the interaction of x with respect to Pn. When ξ depends on local data in the sense that its radius of stabilization has an exponential tail, we establish expectation asymptotics, variance asymptotics, and central limit theorems for H ξ n and, more generally, for statistics of the re-scaled, possibly signed, ξ-weighted point measures µ ξ n := x∈Pn ξ(x, Pn)δ n −1/d x , as Wn ↑ R d . This gives the limit theory for non-linear geometric statistics (such as clique counts, the number of Morse critical points, intrinsic volumes of the Boolean model, and total edge length of the k-nearest neighbors graph) of α-determinantal point processes (for −1/α ∈ N) having fast decreasing kernels, including the β-Ginibre ensembles, extending the Gaussian fluctuation results of Soshnikov [72] to non-linear statistics. It also gives the limit theory for geometric U-statistics of α-permanental point processes (for 1/α ∈ N) as well as the zero set of Gaussian entire functions, extending the central limit theorems of Nazarov and Sodin [53] and Shirai and Takahashi [71], which are also confined to linear statistics. The proof of the central limit theorem relies on a factorial moment expansion originating in [12,13] to show the fast decay of the correlations of ξ-weighted point measures. The latter property is shown to imply a condition equivalent to Brillinger mixing and consequently yields the asymptotic normality of µ ξ n via an extension of the cumulant method.