The point process of vertices of an iteration infinitely divisible or, more specifically, of an iteration stable random tessellation in the Euclidean plane is considered. We explicitly determine its covariance measure and its pair-correlation function, as well as the crosscovariance measure and the cross-correlation function of the vertex point process and the random length measure in the general nonstationary regime. We also give special formulae in the stationary and isotropic setting. Exact formulae are given for vertex count variances in compact and convex sampling windows, and asymptotic relations are derived. Our results are then compared with those for a Poisson line tessellation having the same length density parameter. Moreover, a functional central limit theorem for the joint process of suitably rescaled total edge counts and edge lengths is established with the process (ξ, tξ ), t > 0, arising in the limit, where ξ is a centered Gaussian variable with explicitly known variance.
Since the seminal work by Nagel and Weiss, the iteration stable (STIT) tessellations have attracted considerable interest in stochastic geometry as a natural and flexible, yet analytically tractable model for hierarchical spatial cell-splitting and crack-formation processes. We provide in this paper a fundamental link between typical characteristics of STIT tessellations and those of suitable mixtures of Poisson hyperplane tessellations using martingale techniques and general theory of piecewise deterministic Markov processes (PDMPs). As applications, new mean values and new distributional results for the STIT model are obtained.
The random convex hull of a Poisson point process in R d whose intensity measure is a multiple of the standard Gaussian measure on R d is investigated. The purpose of this paper is to invent a new viewpoint on these Gaussian polytopes that is based on cumulants and the general large deviation theory of Saulis and Statulevičius. This leads to new and powerful concentration inequalities, moment bounds, Marcinkiewicz-Zygmund-type strong laws of large numbers, central limit theorems and moderate deviation principles for the volume and the face numbers. Corresponding results are also derived for the empirical measures induced by these key geometric functionals, taking thereby care of their spatial profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.