Because of its flexibility, intuitiveness, and expressivity, the graph edit distance (GED) is one of the most widely used distance measures for labeled graphs. Since exactly computing GED is NP-hard, over the past years, various heuristics have been proposed. They use techniques such as transformations to the linear sum assignment problem with error-correction, local search, and linear programming to approximate GED via upper or lower bounds. In this paper, we provide a systematic overview of the most important heuristics. Moreover, we empirically evaluate all compared heuristics within an integrated implementation.