The role of gap junctional intercellular communication (GJIC) in bystander killing with herpes simplex virus thymidine kinase (HSV-TK) and ganciclovir (GCV) was evaluated in U251 cells expressing a dominant-negative connexin 43 cDNA (DN14), and in HeLa cells, reportedly devoid of connexin protein. These cell lines both exhibited 0% GJIC when assayed by Lucifer Yellow fluorescent dye microinjection. Bystander cytotoxicity was still apparent in 50:50 cocultures of DN14 and HSV-TK-expressing U251 cells, but not in 50:50 cocultures of HeLa cells. However, the sensitivity of HeLa HSV-TK-expressing cells to GCV decreased nearly 100-fold (IC 90 ¼ 109 mM) when cocultured with bystander cells compared to results in 100% cultures of HSV-TK-expressing cells (IC 90 ¼ 1.2 mM). A more sensitive flow cytometry technique to measure GJIC over 24 h revealed that the DN14 and HeLa cells exhibited detectable levels of communication (29 and 23%, respectively). Transfer of phosphorylated GCV to HeLa bystander cells occurred within 4 h after drug addition, and GCV triphosphate (GCVTP) accumulated to 213784 pmol/10 6 cells after 24 h. In addition, GCVTP levels were decreased in HSV-TK-expressing cells in coculture (867733 pmol/10 6 cells) compared to 100% cultures of HSV-TK-expressing cells (17737188 pmol/10 6 cells). The half-life of GCVTP in the HSV-TK-expressing cells was approximately four times that measured in the bystander cells (12.3 and 3.1 h, respectively). These data suggest that the lack of bystander cytotoxicity in HeLa cocultures is due to low transfer of phosphorylated GCV and a rapid half-life of GCVTP in the bystander cells. Thus, GCV phosphate transfer to non-HSV-TK-expressing bystander cells may mediate either bystander cell killing or sparing of HSV-TK-positive cells, depending upon the cell specific drug metabolism.