The internal ribosome entry site (IRES) has been widely used to coexpress heterologous gene products by a message from a single promoter. However, little is known about the efficiency of IRES-dependent second gene expression in comparison with that of first gene expression. This study was undertaken to characterize the relative expression of IRES-dependent second gene in a bicistronic vector, which was derived from the 5' untranslated regions of the encephalomyocarditis virus (EMCV). IRES-dependent second gene expression was compared with cap-dependent first gene expression in several cultured cell lines and in mouse liver in vivo. The expression of the IRES-dependent second gene ranged from 6 to 100% (in most cases between 20 and 50%) that of the first gene. Second gene expression in a plasmid without the IRES was 0.1-0.8% (with some exceptions) that of the first gene. These findings have important implications for the use of IRES, i.e., care should be taken regarding the decreased capacity of IRES-dependent downstream gene expression as well as in determining which gene should be positioned as the first or second gene in a bicistronic vector.
In this work we report a novel method to efficiently induce a murine model of Graves’ hyperthyroidism. Inbred mice of different strains were immunized by i.m. injection with adenovirus expressing thyrotropin receptor (TSHR) or β-galactosidase (1 × 1011 particles/mouse, three times at 3-wk intervals) and followed up to 8 wk after the third immunization. Fifty-five percent of female and 33% of male BALB/c (H-2d) and 25% of female C57BL/6 (H-2b) mice developed Graves’-like hyperthyroidism with elevated serum thyroxine (T4) levels and positive anti-TSHR autoantibodies with thyroid-stimulating Ig (TSI) and TSH-binding inhibiting Ig (TBII) activities. In contrast, none of female CBA/J (H-2k), DBA/1J (H-2q), or SJL/J (H-2s) mice developed Graves’ hyperthyroidism or anti-TSHR autoantibodies except SJL/J, which showed strong TBII activities. There was a significant positive correlation between TSI values and T4 levels, but the correlations between T4 and TBII and between TSI and TBII were very weak. TSI activities in sera from hyperthyroid mice measured with some chimeric TSH/lutropin receptors suggested that their epitope(s) on TSHR appeared similar to those in patients with Graves’ disease. The thyroid glands from hyperthyroid mice displayed diffuse enlargement with hypertrophy and hypercellularity of follicular epithelia with occasional protrusion into the follicular lumen, characteristics of Graves’ hyperthyroidism. Decreased amounts of colloid were also observed. However, there was no inflammatory cell infiltration. Furthermore, extraocular muscles from hyperthyroid mice were normal. Thus, the highly efficient means that we now report to induce Graves’ hyperthyroidism in mice will be very useful for studying the pathogenesis of autoimmunity in Graves’ disease.
The use of recombinant adenovirus (Ad) vectors containing genetically modified capsid proteins is an attractive strategy for achieving targeted gene transfer. The HI loop of the fiber knob is a promising candidate location for the incorporation of foreign ligands for achieving this goal. However, the method of constructing an Ad vector containing a foreign ligand in the HI loop of the fiber knob has proved difficult. In this study, we developed a simple system to construct fibermodified vectors. To do this, a vector plasmid containing a complete E1/E3-deleted Ad type 5 genome and a unique Csp45I and/or ClaI site between positions 32679 and 32680 of the Ad genome (residues threonine-546 and proline-547 of the fiber protein) was constructed. Oligonucleotides corresponding to the Arg-Gly-Asp (RGD) or Asn-Gly-Arg (NGR)-containing peptide motif (as a model) and containing a
Coordinated control of energy metabolism and glucose homeostasis requires communication between organs and tissues. We identified a neuronal pathway that participates in the cross talk between the liver and adipose tissue. By studying a mouse model, we showed that adenovirus-mediated expression of peroxisome proliferator-activated receptor (PPAR)-g2 in the liver induces acute hepatic steatosis while markedly decreasing peripheral adiposity. These changes were accompanied by increased energy expenditure and improved systemic insulin sensitivity. Hepatic vagotomy and selective afferent blockage of the hepatic vagus revealed that the effects on peripheral tissues involve the afferent vagal nerve. Furthermore, an antidiabetic thiazolidinedione, a PPARg agonist, enhanced this pathway. This neuronal pathway from the liver may function to protect against metabolic perturbation induced by excessive energy storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.