In this study, we describe a simple and reliable method to study neuroprotective effects in living and organized neural tissue. This method, which was based on retinal explants for in vivo focal lesions, was conceived as a collection of modular procedures, which can be customized for particular demands. With this model, it is possible to combine immunohistochemistry with image data analysis to track the two- or three-dimensional redistribution of proteins as a time/space function of primary cell loss. At the same time, it is possible to finely control the exposure of the tissue to specific drugs and molecules. In order to illustrate the use of the proposed method, we tested the effects of two different nanotube compounds on retinal explant viability. Transcriptome analyses can be separately performed in the lesion focus and penumbra with laser capture microdissection followed by polymerase chain reaction analyses. In addition, other common experimental drawbacks, such as high individual variance, are eliminated. With intraocular injections, treatments can be verified in vivo, with one eye serving as the experimental tissue and the other serving as the control tissue. In summary, we describe a flexible and easy method, which can be useful in combination with a broad variety of recently developed neuroprotective strategies, to study neurodegeneration.