BackgroundThe present study aimed to construct an artificial neural network (ANN) model that leverages characteristic genes associated with osteosarcoma (OS) to enable accurate prognostication for OS patients.MethodsOur research revealed 467 differentially expressed genes (DEGs) via gene expression contrast analysis, consisting of 345 downregulated genes and 122 upregulated genes. Gene Ontology (GO) enrichment analysis illuminated functions primarily encompassing T‐cell activation, secretory granule lumen and antioxidant activity, among others. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we discovered significant correlations between the DEGs and certain pathways, including phagosome, Staphylococcus aureus infection and human T‐cell leukemia virus 1 infection. We then screened out 30 characteristic DEGs (CDEGs) based on random forest analysis and constructed the ANN model using the gene score matrix. To verify the credibility and accuracy of the ANN model, we performed internal and external validation processes, which affirmed our model's predictive capabilities.ResultsThe study further delved into the analysis of immune cell infiltration and its correlation with the target CDEGs, revealing disparities in the infiltration of 22 types of immune cells across different groups and their interrelationships. Moreover, we probed the expression of the two foremost CDEGs (YES1 and MFNG) in OS and normal tissues. We noted a positive relationship between the expression of YES1 and MFNG in OS tissues and the clinicopathological characteristics of OS patients.ConclusionsCollectively, the findings of the present study validate the effectiveness of the CDEGs‐based ANN model in predicting OS patients, which might facilitate early diagnosis and treatment of OS.