The genetic and biochemical networks which underlie such things as homeostasis in metabolism and the developmental programs of living cells, must withstand considerable variations and random perturbations of biochemical parameters. These occur as transient changes in, for example, transcription, translation, and RNA and protein degradation. The intensity and duration of these perturbations differ between cells in a population. The unique state of cells, and thus the diversity in a population, is owing to the different environmental stimuli the individual cells experience and the inherent stochastic nature of biochemical processes (for example, refs 5 and 6). It has been proposed, but not demonstrated, that autoregulatory, negative feedback loops in gene circuits provide stability, thereby limiting the range over which the concentrations of network components fluctuate. Here we have designed and constructed simple gene circuits consisting of a regulator and transcriptional repressor modules in Escherichia coli and we show the gain of stability produced by negative feedback.
cells fully induced with 0.5% galactose) of Gal3p and Gal80p, respectively (Supplementary Figs S2 and S4). Determination of galactose consumption rate To determine the galactose consumption rate, aliquots from cultures were filtered and the galactose concentration of the cell-free medium was analysed as follows. b-Galactose dehydrogenase was used to oxidize galactose in the presence of 2.5 mM NAD þ dissolved in a buffer containing 50 mM imidazole and 5 mM MgCl 2 pH 7.0 (ref. 30). Conversion of NAD þ into NADH was followed spectrophotometrically at 340 nm.
Feedback is a ubiquitous control mechanism of gene networks. Here, we have used positive feedback to construct a synthetic eukaryotic gene switch in Saccharomyces cerevisiae. Within this system, a continuous gradient of constitutively expressed transcriptional activator is translated into a cell phenotype switch when the activator is expressed autocatalytically. This finding is consistent with a mathematical model whose analysis shows that continuous input parameters are converted into a bimodal probability distribution by positive feedback, and that this resembles analog–digital conversion. The autocatalytic switch is a robust property in eukaryotic gene expression. Although the behavior of individual cells within a population is random, the proportion of the cell population displaying either low or high expression states can be regulated. These results have implications for understanding the graded and probabilistic mechanisms of enhancer action and cell differentiation.
The presence of low-copy-number regulators and switch-like signal propagation in regulatory networks are expected to increase noise in cellular processes. We developed a noise amplifier that detects fluctuations in the level of low-abundance mRNAs in yeast. The observed fluctuations are not due to the low number of molecules expressed from a gene per se but originate in the random, rare events of gene activation. The frequency of these events and the correlation between stochastic expressions of genes in a single cell depend on the positioning of the genes along the chromosomes. Transcriptional regulators produced by such random expression propagate noise to their target genes.
Cellular polarization is often a response to distinct extracellular or intracellular cues, such as nutrient gradients or cortical landmarks. However, in the absence of such cues, some cells can still select a polarization axis at random. Positive feedback loops promoting localized activation of the GTPase Cdc42p are central to this process in budding yeast. Here, we explore spontaneous polarization during bud site selection in mutant yeast cells that lack functional landmarks. We find that these cells do not select a single random polarization axis, but continuously change this axis during the G1 phase of the cell cycle. This is reflected in traveling waves of activated Cdc42p which randomly explore the cell periphery. Our integrated computational and in vivo analyses of these waves reveal a negative feedback loop that competes with the aforementioned positive feedback loops to regulate Cdc42p activity and confer dynamic responsiveness on the robust initiation of cell polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.