FoldX is an empirical force field that was developed for the rapid evaluation of the effect of mutations on the stability, folding and dynamics of proteins and nucleic acids. The core functionality of FoldX, namely the calculation of the free energy of a macromolecule based on its high-resolution 3D structure, is now publicly available through a web server at . The current release allows the calculation of the stability of a protein, calculation of the positions of the protons and the prediction of water bridges, prediction of metal binding sites and the analysis of the free energy of complex formation. Alanine scanning, the systematic truncation of side chains to alanine, is also included. In addition, some reporting functions have been added, and it is now possible to print both the atomic interaction networks that constitute the protein, print the structural and energetic details of the interactions per atom or per residue, as well as generate a general quality report of the pdb structure. This core functionality will be further extended as more FoldX applications are developed.
We have developed a statistical mechanics algorithm, TANGO, to predict protein aggregation. TANGO is based on the physico-chemical principles of beta-sheet formation, extended by the assumption that the core regions of an aggregate are fully buried. Our algorithm accurately predicts the aggregation of a data set of 179 peptides compiled from the literature as well as of a new set of 71 peptides derived from human disease-related proteins, including prion protein, lysozyme and beta2-microglobulin. TANGO also correctly predicts pathogenic as well as protective mutations of the Alzheimer beta-peptide, human lysozyme and transthyretin, and discriminates between beta-sheet propensity and aggregation. Our results confirm the model of intermolecular beta-sheet formation as a widespread underlying mechanism of protein aggregation. Furthermore, the algorithm opens the door to a fully automated, sequence-based design strategy to improve the aggregation properties of proteins of scientific or industrial interest.
a b s t r a c tThe correlation between mRNA and protein abundances in the cell has been reported to be notoriously poor. Recent technological advances in the quantitative analysis of mRNA and protein species in complex samples allow the detailed analysis of this pathway at the center of biological systems. We give an overview of available methods for the identification and quantification of free and ribosome-bound mRNA, protein abundances and individual protein turnover rates. We review available literature on the correlation of mRNA and protein abundances and discuss biological and technical parameters influencing the correlation of these central biological molecules.
The genetic and biochemical networks which underlie such things as homeostasis in metabolism and the developmental programs of living cells, must withstand considerable variations and random perturbations of biochemical parameters. These occur as transient changes in, for example, transcription, translation, and RNA and protein degradation. The intensity and duration of these perturbations differ between cells in a population. The unique state of cells, and thus the diversity in a population, is owing to the different environmental stimuli the individual cells experience and the inherent stochastic nature of biochemical processes (for example, refs 5 and 6). It has been proposed, but not demonstrated, that autoregulatory, negative feedback loops in gene circuits provide stability, thereby limiting the range over which the concentrations of network components fluctuate. Here we have designed and constructed simple gene circuits consisting of a regulator and transcriptional repressor modules in Escherichia coli and we show the gain of stability produced by negative feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.