This review explores the mechanisms underlying alcohol‐induced oesophageal carcinogenesis, including DNA damage, oxidative stress, and nutritional deficiencies. Alcohol metabolism primarily involves alcohol dehydrogenase (ADH) converting ethanol to acetaldehyde, which can cause DNA damage, inhibit repair mechanisms, and form DNA adducts thus inhibiting DNA replication. Plus, it delves into the epidemiological evidence, genetic susceptibility, epigenetic modifications, biomarkers, and preventive strategies associated with alcohol‐related oesophageal cancers. Consumption of alcohol increases the risk of gastroesophageal reflux disease thus compromising mucosal integrity of the oesophagus as dysregulation of cytokines such as IL‐18, TNFA, GATA3, TLR4, and CD68 expands the intercellular spaces of epithelial cells. Genetic variants, such as ADH1B rs1229984 and ALDH2 rs671, significantly influence susceptibility to alcohol‐related oesophageal cancers, with these variations affecting acetaldehyde metabolism and cancer risk. Understanding these factors is crucial for early detection, effective treatment, and the development of targeted prevention strategies. Biomarkers, such as miRNA and metabolite markers, offer non‐invasive methods for early detection, while advanced endoscopic techniques provide better diagnostic accuracy. Pharmacological interventions, such as statins and proton pump inhibitors, also show potential for reducing cancer progression in high‐risk individuals. Despite advances, late‐stage oesophageal cancer diagnoses are still common, highlighting the need for better screening and prevention. Further research, including this study, should aim to improve early detection, personalise prevention, and explore new treatments to reduce cases and enhance outcomes in alcohol‐related oesophageal cancers.