We previously reported the identification of a novel nuclear compartment detectable in heatshocked HeLa cells that we termed stress-induced Src-activated during mitosis nuclear body (SNB). This structure is the recruitment center for heat shock factor 1 and for a number of RNA processing factors, among a subset of Serine-Arginine splicing factors. In this article, we show that stress-induced SNBs are detectable in human but not in hamster cells. By means of hamsterϾhuman cell hybrids, we have identified three human chromosomes (9, 12, and 15) that are individually able to direct the formation of stress bodies in hamster cells. Similarly to stress-induced SNB, these bodies are sites of accumulation of hnRNP A1-interacting protein and heat shock factor 1, are usually associated to nucleoli, and consist of clusters of perichromatin granules. We show that the p13-q13 region of human chromosome 9 is sufficient to direct the formation of stress bodies in hamsterϾhuman cell hybrids. Fluorescence in situ hybridization experiments demonstrate that the pericentromeric heterochromatic q12 band of chromosome 9 and the centromeric regions of chromosomes 12 and 15 colocalize with stress-induced SNBs in human cells. Our data indicate that human chromosomes 9, 12, and 15 contain the nucleation sites of stress bodies in heat-shocked HeLa cells.