This paper concerns the modeling of eddy current losses in conductive materials in the vicinity of a high-frequency transformer; more specifically, in two-dimensional problems where a high ratio between the object dimensions and the skin-depth exists. The analysis is performed using the Spectral Element Method (SEM), where high order Legendre–Gauss–Lobatto polynomials are applied to increase the accuracy of the results with respect to the Finite Element Method (FEM). A convergence analysis is performed on a two-dimensional benchmark system, for both the SEM and FEM. The benchmark system consists of a high-frequency transformer confined by a conductive cylinder and is free of complex geometrical shapes. Two different objectives are investigated. First, the discretizations at which the relative error with respect to a reference solution is minimized are compared. Second, the discretizations at which the trade-off between computational effort and accuracy is optimized are compared. The results indicated that by applying the SEM to the two-dimensional benchmark system, a higher accuracy per degree of freedom and significantly lower computation time are obtained with respect to the FEM. Therefore, the SEM is proven to be particularly useful for this type of problem.