Ion–water interactions play a central role in determining the properties of aqueous systems in a wide range of environments. However, a quantitative understanding of how the hydration properties of ions evolve from small aqueous clusters to bulk solutions and interfaces remains elusive. Here, we introduce the second generation of data-driven many-body energy (MB- nrg) potential energy functions (PEFs) representing bromide–water and iodide–water interactions. The MB-nrg PEFs use permutationally invariant polynomials to reproduce two-body and three-body energies calculated at the coupled cluster level of theory, and implicitly represent all higher-body energies using classical many-body polarization. A systematic analysis of the hydration structure of small Br−(H2O)n and I−(H2O)n clusters demonstrates that the MB-nrg PEFs predict interaction energies in quantitative agreement with “gold standard” coupled cluster reference values. Importantly, when used in molecular dynamics simulations carried out in the isothermal-isobaric ensemble for single bromide and iodide ions in liquid water, the MB-nrg PEFs predict extended X-ray absorption fine structure (EXAFS) spectra that accurately reproduce the experimental spectra, which thus allows for characterizing the hydration structure of the two ions with high level of confidence.