“…Increasing the thermal gradient on both sides of the device, by increasing the temperature of the thermal contacts at Copper 1, Copper 4 and Copper 6, results in an increase in electrical power generated at the load, as shown in Figure 12. This is as expected as the Seebeck effect is temperature dependent, and the electrical power generated by a thermoelectric module is related to the temperature gradient between two sides of the device [2]. The lattice temperature of the thermoelectric module, with an applied 100 Kelvin temperature gradient between both sides of the device, is shown in Figure 13 and demonstrates that the temperature gradient within each individual thermoelectric P-type and N-type pellet, is now significantly higher than was obtained with a much lower temperature gradient of 1 Kelvin applied to the device in Figure 9 [8].…”