“…), we obtain < [𝑈, 𝑉], 𝜉 >=< ∇ ̃𝑈𝑉, 𝜉 > −< 𝑉, ∇ ̃𝑈𝜉, >= 0.Next, for every 𝑈, 𝑉 ∈ Γ(𝔇) and 𝑍 = 𝑄𝑍 + 𝑅𝑍 ∈ Γ(𝔇 ⊕ 𝔇 𝜃 ). Using (5),(8) and 𝐹𝑉 = 0 for all 𝑉 ∈ Γ(𝔇), we get< [𝑈, 𝑉], 𝑍 >=< ∇ ̃𝑈𝜑𝑉, 𝜑𝑍 > −< ∇ ̃𝑉𝜑𝑈, 𝜑𝑍 > =< ∇ ̃𝑈𝑇𝑉, 𝑇𝑄𝑍 + 𝐹𝑄𝑍 > +< ∇ ̃𝑈𝑇𝑉, 𝐹𝑅𝑍 > −< ∇ ̃𝑉𝑇𝑈, 𝜑𝑄𝑍 + 𝜑𝑅𝑍 >.By using (9) in the above equation, we have < [𝑈, 𝑉], 𝑍 >=< ∇ 𝑈 𝑇𝑉, 𝑇𝑄𝑍 > +< ℎ(𝑈, 𝑇𝑉), 𝐹𝑄𝑍 > +< ℎ(𝑈, 𝑇𝑉), 𝐹𝑅𝑍 > +< 𝜑(∇ ̃𝑉𝑇𝑈), 𝑅𝑍 > −< ∇ ̃𝑉𝑇𝑈, 𝑇𝑄𝑍 + 𝐹𝑄𝑍 > =< ∇ 𝑈 𝑇𝑉 − ∇ 𝑉 𝑇𝑈, 𝑇𝑄𝑍 > +< ℎ(𝑈, 𝑇𝑉), 𝐹𝑍 > +< 𝑇∇ 𝑉 𝑇𝑈 + 𝐵ℎ(𝑉, 𝑇𝑈), 𝑅𝑍 > −< ℎ(𝑉, 𝑇𝑈), 𝐹𝑄𝑍 >…”