2021
DOI: 10.3390/axioms10040265
|View full text |Cite
|
Sign up to set email alerts
|

General Properties on Differential Sets of a Graph

Abstract: Let G=(V,E) be a graph, and let β∈R. Motivated by a service coverage maximization problem with limited resources, we study the β-differential of G. The β-differential of G, denoted by ∂β(G), is defined as ∂β(G):=max{|B(S)|−β|S|suchthatS⊆V}. The case in which β=1 is known as the differential of G, and hence ∂β(G) can be considered as a generalization of the differential ∂(G) of G. In this paper, upper and lower bounds for ∂β(G) are given in terms of its order |G|, minimum degree δ(G), maximum degree Δ(G), among… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?