Let G = (V, E) be a simple graph with vertex set V and edge set E. Let D be a subset of V, and let B(D) be the set of neighbours ofMotivated by an influential maximization problem, in this paper we study the β-differential of G.
If G = ( V ( G ) , E ( G ) ) is a simple connected graph with the vertex set V ( G ) and the edge set E ( G ) , S is a subset of V ( G ) , and let B ( S ) be the set of neighbors of S in V ( G ) ∖ S . Then, the differential of S ∂ ( S ) is defined as | B ( S ) | − | S | . The differential of G, denoted by ∂ ( G ) , is the maximum value of ∂ ( S ) for all subsets S ⊆ V ( G ) . The graph operator Q ( G ) is defined as the graph that results by subdividing every edge of G once and joining pairs of these new vertices iff their corresponding edges are incident in G. In this paper, we study the relations between ∂ ( G ) and ∂ ( Q ( G ) ) . Besides, we exhibit some results relating the differential ∂ ( G ) and well-known graph invariants, such as the domination number, the independence number, and the vertex-cover number.
Let G=(V,E) be a graph, and let β∈R. Motivated by a service coverage maximization problem with limited resources, we study the β-differential of G. The β-differential of G, denoted by ∂β(G), is defined as ∂β(G):=max{|B(S)|−β|S|suchthatS⊆V}. The case in which β=1 is known as the differential of G, and hence ∂β(G) can be considered as a generalization of the differential ∂(G) of G. In this paper, upper and lower bounds for ∂β(G) are given in terms of its order |G|, minimum degree δ(G), maximum degree Δ(G), among other invariants of G. Likewise, the β-differential for graphs with heavy vertices is studied, extending the set of applications that this concept can have.
<abstract><p>Consider a simple graph $ \Gamma = (V(\Gamma), E(\Gamma)) $ with $ n $ vertices and $ m $ edges. Let $ P $ be a subset of $ V(\Gamma) $ and $ B(P) $ the set of neighbors of $ P $ in $ V(\Gamma)\backslash P $. In the study of graphs, the concept of <italic>differential</italic> refers to a measure of how much the number of edges leaving a set of vertices exceeds the size of that set. Specifically, given a subset $ P $ of vertices, the differential of $ P $, denoted by $ \partial(P) $, is defined as $ |B(P)|-|P| $. The <italic>differential</italic> of $ \Gamma $, denoted by $ \partial(\Gamma) $, is then defined as the maximum differential over all possible subsets of $ V(\Gamma) $. Additionally, the subdivision operator $ {{\mathcal{S}}({\Gamma})} $ is defined as the graph obtained from $ \Gamma $ by inserting a new vertex on each edge of $ \Gamma $. In this paper, we present results for the differential of graphs on the subdivision operator $ {{\mathcal{S}}({\Gamma})} $ where some of these show exact values of $ \partial({{\mathcal{S}}({\Gamma})}) $ if $ \Gamma $ belongs to a classical family of graphs. We obtain bounds for $ \partial({{\mathcal{S}}({\Gamma})}) $ involving invariants of a graph such as order $ n $, size $ m $ and maximum degree $ \Delta $, and we study the realizability of the graph $ \Gamma $ for any value of $ \partial({{\mathcal{S}}({\Gamma})}) $ in the interval $ \left[n-2, \frac{n(n-1)}{2}-n+2\right] $. Moreover, we give a characterization for $ \partial({{\mathcal{S}}({\Gamma})}) $ using the notion of edge star packing.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.