2014
DOI: 10.1007/s11785-014-0436-5
|View full text |Cite
|
Sign up to set email alerts
|

Generalised Maxwell Equations in Higher Dimensions

Abstract: This paper deals with the generalisation of the classical Maxwell equations to arbitrary dimension m and their connections with the Rarita-Schwinger equation. This is done using the framework of Clifford analysis, a multivariate function theory in which arbitrary irreducible representations for the spin group can be realised in terms of polynomials satisfying a system of differential equations. This allows the construction of generalised wave equations in terms of the unique conformally invariant secondorder o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
59
0

Year Published

2018
2018
2020
2020

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 19 publications
(59 citation statements)
references
References 30 publications
0
59
0
Order By: Relevance
“…To study null solutions to this generalized Maxwell equation , we look at kerlD1, ie, polynomials bold-italicffalse(bold-italicx,bold-italicufalse)Cfalse(Rm×Rm,double-struckF;H1false) in 2 variables satisfying D1bold-italicffalse(bold-italicx,bold-italicufalse)=0 and Exbold-italicffalse(bold-italicx,bold-italicufalse)=lbold-italicffalse(bold-italicx,bold-italicufalse), where Ex is the Euler operator with respect to x and l is a natural number. According to the argument in Eelbode and Roels, we know that for l ≥ 2, dimkerlscriptD1=dimscriptPl,1(double-struckRm×double-struckRm,F;scriptH1)dimscriptPl2,1(double-struckRm×double-struckRm,F;scriptH1)=m+l1m1m+l3m1dim(scriptH1). Here bold-italicffalse(bold-italicx,bold-italicufalse)Pl,1false(Rm×Rm,double-struckF;H1false) stands for an …”
Section: Generalized Maxwell Operator In M‐dimensional Spacementioning
confidence: 99%
See 4 more Smart Citations
“…To study null solutions to this generalized Maxwell equation , we look at kerlD1, ie, polynomials bold-italicffalse(bold-italicx,bold-italicufalse)Cfalse(Rm×Rm,double-struckF;H1false) in 2 variables satisfying D1bold-italicffalse(bold-italicx,bold-italicufalse)=0 and Exbold-italicffalse(bold-italicx,bold-italicufalse)=lbold-italicffalse(bold-italicx,bold-italicufalse), where Ex is the Euler operator with respect to x and l is a natural number. According to the argument in Eelbode and Roels, we know that for l ≥ 2, dimkerlscriptD1=dimscriptPl,1(double-struckRm×double-struckRm,F;scriptH1)dimscriptPl2,1(double-struckRm×double-struckRm,F;scriptH1)=m+l1m1m+l3m1dim(scriptH1). Here bold-italicffalse(bold-italicx,bold-italicufalse)Pl,1false(Rm×Rm,double-struckF;H1false) stands for an …”
Section: Generalized Maxwell Operator In M‐dimensional Spacementioning
confidence: 99%
“…The generalized Maxwell operator in Rm, denoted by D1, has the following form: scriptD1=normalΔbold-italicx4mu,bold-italicDbold-italicxbold-italicDbold-italicu,bold-italicDbold-italicx:C(double-struckRm×double-struckRm,F;scriptH1)C(double-struckRm×double-struckRm,F;scriptH1), where u,v=u1v1++umvm,u,vdouble-struckRm. According to our assumptions, we consider functions bold-italicffalse(bold-italicx,bold-italicufalse)Cfalse(Rm×Rm,double-struckR;H1false), which can be rewritten as f(x,u)=j=1mujbold-italicfbold-italicj(x), with fjfalse(bold-italicxfalse)Cfalse(Rm,double-struckRfalse). The equation <...>…”
Section: Generalized Maxwell Operator In M‐dimensional Spacementioning
confidence: 99%
See 3 more Smart Citations