“…Table 1 summarizes the characteristics of the articles that refer to the use of ML on psychometric questionnaires for the diagnosis of ADHD. Of the 17 articles reviewed eight used random forest (RF) (Cordova et al, 2020; Davakumar & Siromoney, 2020; Goh et al, 2023; Grazioli et al, 2023; Haque et al, 2023; Kim et al, 2021, 2023; Tachmazidis et al, 2020), seven decision tree (DT) (Ardulov et al, 2021; Bledsoe et al, 2020; Chen et al, 2023; Christiansen et al, 2020; Grazioli et al, 2023; Haque et al, 2023; Tachmazidis et al, 2020), six support vector machine (SVM) (Bledsoe et al, 2020; Chen et al, 2023; Davakumar & Siromoney, 2020; Duda et al, 2016; Grazioli et al, 2023; Tachmazidis et al, 2020), four linear discriminant analysis (LDA) (Chen et al, 2023; Duda et al, 2016, 2017; Kim et al, 2021), three k‐nearest neighbours (KNN) (Chen et al, 2023; Kim et al, 2021; Tachmazidis et al, 2020), three Gaussian Naïve Bayes (Chen et al, 2023; Haque et al, 2023; Tachmazidis et al, 2020), three logistic regression (LR) (Chen et al, 2023; Duda et al, 2016; Tachmazidis et al, 2020), three artificial neural network (ANN) (Chen et al, 2023; Davakumar & Siromoney, 2020; Lin et al, 2023), two Lasso regression (Duda et al, 2016; Weigard et al, 2023), two gradient boosting (GB) (Chen et al, 2023; Kim et al, 2023), two elastic net (ENet) (Duda et al, 2017; Liu et al, 2023), one Q‐learning (Ardulov et al, 2021) and one principal components regression (PCR) (Weigard et al, 2023).…”