2022
DOI: 10.31234/osf.io/pjwmv
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Generalizable prediction of childhood ADHD symptoms from neurocognitive testing and youth characteristics

Abstract: Importance: Childhood Attention-Deficit/Hyperactivity Disorder (ADHD) symptoms are linked to many negative outcomes and widely believed to result from disrupted neurocognitive development. However, evidence for the clinical value of neurocognitive assessments in this context has been mixed and there have been no large-scale efforts to quantify the potential of neurocognitive abilities, along with data from other domains (e.g., child and family characteristics, demographics), for use in generalizable machine le… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 27 publications
0
4
0
Order By: Relevance
“…Table 1 summarizes the characteristics of the articles that refer to the use of ML on psychometric questionnaires for the diagnosis of ADHD. Of the 17 articles reviewed eight used random forest (RF) (Cordova et al, 2020; Davakumar & Siromoney, 2020; Goh et al, 2023; Grazioli et al, 2023; Haque et al, 2023; Kim et al, 2021, 2023; Tachmazidis et al, 2020), seven decision tree (DT) (Ardulov et al, 2021; Bledsoe et al, 2020; Chen et al, 2023; Christiansen et al, 2020; Grazioli et al, 2023; Haque et al, 2023; Tachmazidis et al, 2020), six support vector machine (SVM) (Bledsoe et al, 2020; Chen et al, 2023; Davakumar & Siromoney, 2020; Duda et al, 2016; Grazioli et al, 2023; Tachmazidis et al, 2020), four linear discriminant analysis (LDA) (Chen et al, 2023; Duda et al, 2016, 2017; Kim et al, 2021), three k‐nearest neighbours (KNN) (Chen et al, 2023; Kim et al, 2021; Tachmazidis et al, 2020), three Gaussian Naïve Bayes (Chen et al, 2023; Haque et al, 2023; Tachmazidis et al, 2020), three logistic regression (LR) (Chen et al, 2023; Duda et al, 2016; Tachmazidis et al, 2020), three artificial neural network (ANN) (Chen et al, 2023; Davakumar & Siromoney, 2020; Lin et al, 2023), two Lasso regression (Duda et al, 2016; Weigard et al, 2023), two gradient boosting (GB) (Chen et al, 2023; Kim et al, 2023), two elastic net (ENet) (Duda et al, 2017; Liu et al, 2023), one Q‐learning (Ardulov et al, 2021) and one principal components regression (PCR) (Weigard et al, 2023).…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations
“…Table 1 summarizes the characteristics of the articles that refer to the use of ML on psychometric questionnaires for the diagnosis of ADHD. Of the 17 articles reviewed eight used random forest (RF) (Cordova et al, 2020; Davakumar & Siromoney, 2020; Goh et al, 2023; Grazioli et al, 2023; Haque et al, 2023; Kim et al, 2021, 2023; Tachmazidis et al, 2020), seven decision tree (DT) (Ardulov et al, 2021; Bledsoe et al, 2020; Chen et al, 2023; Christiansen et al, 2020; Grazioli et al, 2023; Haque et al, 2023; Tachmazidis et al, 2020), six support vector machine (SVM) (Bledsoe et al, 2020; Chen et al, 2023; Davakumar & Siromoney, 2020; Duda et al, 2016; Grazioli et al, 2023; Tachmazidis et al, 2020), four linear discriminant analysis (LDA) (Chen et al, 2023; Duda et al, 2016, 2017; Kim et al, 2021), three k‐nearest neighbours (KNN) (Chen et al, 2023; Kim et al, 2021; Tachmazidis et al, 2020), three Gaussian Naïve Bayes (Chen et al, 2023; Haque et al, 2023; Tachmazidis et al, 2020), three logistic regression (LR) (Chen et al, 2023; Duda et al, 2016; Tachmazidis et al, 2020), three artificial neural network (ANN) (Chen et al, 2023; Davakumar & Siromoney, 2020; Lin et al, 2023), two Lasso regression (Duda et al, 2016; Weigard et al, 2023), two gradient boosting (GB) (Chen et al, 2023; Kim et al, 2023), two elastic net (ENet) (Duda et al, 2017; Liu et al, 2023), one Q‐learning (Ardulov et al, 2021) and one principal components regression (PCR) (Weigard et al, 2023).…”
Section: Resultsmentioning
confidence: 99%
“…On the other hand, the questionnaires used in the different studies on which ML techniques were applied varied widely. Among them, 13 studies used scales that diagnosed ADHD (Bledsoe et al, 2020; Chen et al, 2023; Christiansen et al, 2020; Cordova et al, 2020; Davakumar & Siromoney, 2020; Goh et al, 2023; Grazioli et al, 2023; Haque et al, 2023; Kim et al, 2023; Lin et al, 2023; Liu et al, 2023; Tachmazidis et al, 2020; Weigard et al, 2023), four articles used questionnaires assessing social skills (Duda et al, 2016, 2017; Goh et al, 2023; Kim et al, 2021), an article administered a test diagnosing ASD (Ardulov et al, 2021), a study used a questionnaire that assessed personality (Kim et al, 2021), an article used a scale that measured intelligence (Grazioli et al, 2023), and an article used a test that assessed academic performance (Goh et al, 2023).…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations