1999
DOI: 10.1137/s0036142997317365
|View full text |Cite
|
Sign up to set email alerts
|

Generalized Computation of Schröder Iteration Functions To Motivate Families of Julia and Mandelbrot-Like Sets

Abstract: Schröder iteration functions, a generalization of the Newton-Raphson method to determine roots of equations, are generally rational functions which possess some critical points free to converge to attracting cycles. These free critical points, however, satisfy some higher-degree polynomial equations. We present a new algorithmic construction to compute in general all of the Schröder functions' terms as well as to maximize the computational efficiency of these functions associated with a one-parameter family of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2005
2005
2022
2022

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 18 publications
(3 citation statements)
references
References 8 publications
0
2
0
1
Order By: Relevance
“…. ), associated to the one-parameter family p A , some progress in the study of the A-parameter space has been achieved in [6], [7], [17], and [18].…”
Section: Conjugacy Classesmentioning
confidence: 99%
“…. ), associated to the one-parameter family p A , some progress in the study of the A-parameter space has been achieved in [6], [7], [17], and [18].…”
Section: Conjugacy Classesmentioning
confidence: 99%
“…The following family of iterative functions represents Newton's method, Chebyshev's iterative function, Halley's method, Super-Halley, c-iterative function (considering θ = 0 below) and Chebyshev-Halley family, among others. See for instance [22,[29][30][31][32][33][34][35][36][37][38]. The family of iterative methods given by…”
mentioning
confidence: 99%
“…Οι επαναληπτικές συναρτήσεις Schroder αποτελούν μία οικογένεια ρητών επαναληπτικών συναρτή σεων, οι οποίες είναι σχεδιασμένες, ώστε να συγκλίνουν με τάξη σ προς τις ρίζες μιας συνάρτησης / για κάθε σ > 2. Μέρος αυτού του εδαφίου έχει αναπτυχθεί στην [59] και μπορεί να θεωρηθεί επέκταση της [156] για συναρτήσεις Schroder τάξης υψηλότερης από τέσσερα.…”
Section: επαναληπτική μέθοδος Schroderunclassified